Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776321

RESUMEN

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína 58 DEAD Box , Interferón Tipo I , Macrófagos , Ratones Noqueados , Infecciones por Virus ARN , Ubiquitinas , Animales , Macrófagos/virología , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteína 58 DEAD Box/metabolismo , Interferón Tipo I/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Citocinas/metabolismo , Ratones Endogámicos C57BL , Humanos , Receptores Inmunológicos/metabolismo , Interferón beta/metabolismo , Virus ARN/inmunología , Factor 3 Regulador del Interferón/metabolismo
2.
Nat Commun ; 15(1): 4127, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750080

RESUMEN

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Transducción de Señal , Gránulos de Estrés , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Gránulos de Estrés/metabolismo , ARN Helicasas/metabolismo , ADN Helicasas/metabolismo , Proteína 58 DEAD Box/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunidad Innata , ARN Bicatenario/metabolismo , Células HEK293 , Células HeLa , Gránulos Citoplasmáticos/metabolismo , Infecciones por Virus ARN/virología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/inmunología , Receptores Inmunológicos/metabolismo
3.
PLoS Pathog ; 17(10): e1009841, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648591

RESUMEN

In general, in mammalian cells, cytosolic DNA viruses are sensed by cyclic GMP-AMP synthase (cGAS), and RNA viruses are recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, triggering a series of downstream innate antiviral signaling steps in the host. We previously reported that measles virus (MeV), which possesses an RNA genome, induces rapid antiviral responses, followed by comprehensive downregulation of host gene expression in epithelial cells. Interestingly, gene ontology analysis indicated that genes encoding mitochondrial proteins are enriched among the list of downregulated genes. To evaluate mitochondrial stress after MeV infection, we first observed the mitochondrial morphology of infected cells and found that significantly elongated mitochondrial networks with a hyperfused phenotype were formed. In addition, an increased amount of mitochondrial DNA (mtDNA) in the cytosol was detected during progression of infection. Based on these results, we show that cytosolic mtDNA released from hyperfused mitochondria during MeV infection is captured by cGAS and causes consequent priming of the DNA sensing pathway in addition to canonical RNA sensing. We also ascertained the contribution of cGAS to the in vivo pathogenicity of MeV. In addition, we found that other viruses that induce downregulation of mitochondrial biogenesis as seen for MeV cause similar mitochondrial hyperfusion and cytosolic mtDNA-priming antiviral responses. These findings indicate that the mtDNA-activated cGAS pathway is critical for full innate control of certain viruses, including RNA viruses that cause mitochondrial stress.


Asunto(s)
Inmunidad Innata/inmunología , Sarampión/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Regulación hacia Abajo , Humanos , Virus del Sarampión , Ratones , Ratones Endogámicos C57BL , Mitocondrias/virología , Biogénesis de Organelos , Infecciones por Virus ARN/metabolismo , Virus ARN
4.
PLoS Pathog ; 17(9): e1009918, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34529741

RESUMEN

Under RNA virus infection, retinoic acid-inducible gene I (RIG-I) in host cells recognizes viral RNA and activates the expression of type I IFN. To investigate the roles of protein methyltransferases and demethylases in RIG-I antiviral signaling pathway, we screened all the known related enzymes with a siRNA library and identified LSD1 as a positive regulator for RIG-I signaling. Exogenous expression of LSD1 enhances RIG-I signaling activated by virus stimulation, whereas its deficiency restricts it. LSD1 interacts with RIG-I, promotes its K63-linked polyubiquitination and interaction with VISA/MAVS. Interestingly, LSD1 exerts its function in antiviral response not dependent on its demethylase activity but through enhancing the interaction between RIG-I with E3 ligases, especially TRIM25. Furthermore, we provide in vivo evidence that LSD1 increases antiviral gene expression and inhibits viral replication. Taken together, our findings demonstrate that LSD1 is a positive regulator of signaling pathway triggered by RNA-virus through mediating RIG-I polyubiquitination.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Histona Demetilasas/metabolismo , Infecciones por Virus ARN/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ubiquitinación , Células Vero
5.
Cells ; 10(9)2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34572055

RESUMEN

All intracellular pathogens critically depend on host cell organelles and metabolites for successful infection and replication. One hallmark of positive-strand RNA viruses is to induce alterations of the (endo)membrane system in order to shield their double-stranded RNA replication intermediates from detection by the host cell's surveillance systems. This spatial seclusion also allows for accruing host and viral factors and building blocks required for efficient replication of the genome and prevents access of antiviral effectors. Even though the principle is iterated by almost all positive-strand RNA viruses infecting plants and animals, the specific structure and the organellar source of membranes differs. Here, we discuss the characteristic ultrastructural features of the virus-induced membranous replication organelles in plant and animal cells and the scientific progress gained by advanced microscopy methods.


Asunto(s)
Interacciones Huésped-Patógeno , Membranas Intracelulares/ultraestructura , Orgánulos/ultraestructura , Virus ARN Monocatenarios Positivos/patogenicidad , Infecciones por Virus ARN/patología , ARN Viral/genética , Replicación Viral , Animales , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virología , Orgánulos/metabolismo , Orgánulos/virología , Plantas , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología
6.
Biochem Soc Trans ; 49(4): 1735-1748, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34436545

RESUMEN

Tubulin post-translational modifications (PTMs) constitute a source of diversity for microtubule (MT) functions, in addition to the different isotypes of α and ß-tubulin acting as building blocks of MTs. Also, MT-associated proteins (MAPs) confer different characteristics to MTs. The combination of all these factors regulates the stability of these structures that act as rails to transport organelles within the cell, facilitating the association of motor complexes. All these functions are involved in crucial cellular processes in most cell types, ranging from spindle formation in mitosis to the defense against incoming cellular threats during phagocytosis mediated by immune cells. The regulation of MT dynamics through tubulin PTMs has evolved to depend on many different factors that act in a complex orchestrated manner. These tightly regulated processes are particularly relevant during the induction of effective immune responses against pathogens. Viruses have proved not only to hijack MTs and MAPs in order to favor an efficient infection, but also to induce certain PTMs that improve their cellular spread and lead to secondary consequences of viral processes. In this review, we offer a perspective on relevant MT-related elements exploited by viruses.


Asunto(s)
Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Infecciones por Virus ARN/metabolismo , Virus ARN/fisiología , Fenómenos Fisiológicos de los Virus , Animales , Transporte Biológico , Chlorocebus aethiops , Humanos , Células Vero
7.
Viruses ; 13(6)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064059

RESUMEN

Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.


Asunto(s)
Interacciones Huésped-Patógeno , Virus ARN/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Elementos de Respuesta , Transporte Biológico , Gránulos Citoplasmáticos/metabolismo , Regulación Viral de la Expresión Génica , Humanos , Biosíntesis de Proteínas , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , ARN Viral/química , Estrés Fisiológico , Vesículas Transportadoras/metabolismo , Replicación Viral
8.
Mol Neurobiol ; 58(9): 4477-4486, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34033061

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of human COVID-19, not only causes flu-like symptoms and gut microbiome complications but a large number of infected individuals also experience a host of neurological symptoms including loss of smell and taste, seizures, difficulty concentrating, decreased alertness, and brain inflammation. Although SARS-CoV-2 infections are not more prevalent in Parkinson's disease patients, a higher mortality rate has been reported not only associated with older age and longer disease duration, but also through several mechanisms, such as interactions with the brain dopaminergic system and through systemic inflammatory responses. Indeed, a number of the neurological symptoms seen in COVID-19 patients, as well as the alterations in the gut microbiome, are also prevalent in patients with Parkinson's disease. Furthermore, biochemical pathways such as oxidative stress, inflammation, and protein aggregation have shared commonalities between Parkinson's disease and COVID-19 disease progression. In this review, we describe and compare the numerous similarities and intersections between neurodegeneration in Parkinson's disease and RNA viral infections, emphasizing the current SARS-CoV-2 global health crisis.


Asunto(s)
COVID-19/fisiopatología , Microbioma Gastrointestinal , Enfermedad de Parkinson/fisiopatología , SARS-CoV-2 , Anciano , COVID-19/complicaciones , COVID-19/mortalidad , Trastornos del Conocimiento/etiología , Citocinas/fisiología , Dieta , Progresión de la Enfermedad , Disbiosis/etiología , Disbiosis/fisiopatología , Humanos , Inflamación , Metales Pesados/toxicidad , Modelos Neurológicos , Degeneración Nerviosa , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/virología , Estrés Oxidativo , Enfermedad de Parkinson/etiología , Guías de Práctica Clínica como Asunto , Agregación Patológica de Proteínas/etiología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Trastornos de la Sensación/etiología , alfa-Sinucleína/metabolismo
9.
Viruses ; 13(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567490

RESUMEN

Recent research indicates that most tissue and cell types can secrete and release membrane-enclosed small vesicles, known as exosomes, whose content reflects the physiological/pathological state of the cells from which they originate. These exosomes participate in the communication and cell-to-cell transfer of biologically active proteins, lipids, and nucleic acids. Studies of RNA viruses have demonstrated that exosomes release regulatory factors from infected cells and deliver other functional host genetic elements to neighboring cells, and these functions are involved in the infection process and modulate the cellular responses. This review provides an overview of the biogenesis, composition, and some of the most striking functions of exosome secretion and identifies physiological/pathological areas in need of further research. While initial indications suggest that exosome-mediated pathways operate in vivo, the exosome mechanisms involved in the related effects still need to be clarified. The current review focuses on the role of exosomes in RNA virus infections, with an emphasis on the potential contributions of exosomes to pathogenesis.


Asunto(s)
Exosomas/metabolismo , Infecciones por Virus ARN/patología , Virus ARN/fisiología , Exosomas/química , Biogénesis de Organelos , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/transmisión , Infecciones por Virus ARN/virología , Virus ARN/clasificación , Replicación Viral
10.
Cell Rep ; 34(3): 108631, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33472079

RESUMEN

Mitochondria not only serve as a platform for innate immune signaling transduction but also enhance immune responses by releasing mitochondrial DNA and RNA into the cytoplasm. However, whether mitochondrial matrix proteins could be liberated and involved in immune responses remains enigmatic. Here, we identify the mitochondrial protein ERA G-protein-like 1 (ERAL1) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein by using proximity-based labeling technology. ERAL1 deficiency markedly reduces the downstream antiviral signaling triggered by RNA viruses. Moreover, ERAL1-deficient mice are more susceptible to lethality following RNA virus infection than wild-type mice. After virus infection, ERAL1 is released from mitochondria through the BAX/BAK pore. The cytosolic ERAL1 facilitates lysine 63 (K63)-linked ubiquitination of retinoicacid inducible gene-1 (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) and promotes downstream MAVS polymerization, thus positively regulating antiviral responses.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Proteínas de Unión al GTP/inmunología , Proteínas Mitocondriales/metabolismo , Infecciones por Virus ARN/inmunología , Proteínas de Unión al ARN/inmunología , Receptores Inmunológicos/inmunología , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/metabolismo , Transducción de Señal
11.
Nat Protoc ; 16(1): 516-531, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268883

RESUMEN

The initial interactions between incoming, pre-replicated virion RNA and host protein factors are important in infection and immunity. Yet currently there are no methods to study these crucial events. We established VIR-CLASP (VIRal Cross-Linking And Solid-phase Purification) to identify the primary viral RNA-host protein interactions. First, host cells are infected with 4-thiouridine (4SU)-labeled RNA viruses and irradiated with 365 nm light to crosslink 4SU-labeled viral genomes and interacting proteins from host or virus. The crosslinked RNA binding proteins (RBPs) are purified by solid-phase reversible immobilization (SPRI) beads with protein-denaturing buffers, and then identified by proteomics. With VIR-CLASP, only the incoming virion RNAs are labeled with 4SU, so crosslinking events specifically occur between proteins and pre-replicated virion RNA. Since solid-phase purification under protein-denaturing conditions, rather than sequence-specific nucleic acid purification, is used to pull-down total RNA and crosslinked RBPs, this method facilitates investigation of potentially all RNA viruses, regardless of RNA sequence. Preparation of 4SU-labeled virus takes ∼7 days and VIR-CLASP takes 1 day.


Asunto(s)
Infecciones por Virus ARN/metabolismo , Virus ARN/fisiología , ARN Viral/metabolismo , Ribonucleoproteínas/metabolismo , Extracción en Fase Sólida/métodos , Línea Celular , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Proteómica/métodos , ARN Viral/aislamiento & purificación , Ribonucleoproteínas/aislamiento & purificación
12.
Int Immunopharmacol ; 90: 107152, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33187908

RESUMEN

RNA virus infection activates the RIG-I-like Receptor (RLR) signaling pathway to produce type I interferons (IFNs), the key components of the antiviral immune response. Forkhead box O1 (FoxO1) is a host transcription factor that participates in multiple biological processes. In this study, FoxO1 was identified as a critical negative regulator of RIG-I-triggered signaling. FoxO1 promoted Sendai virus (SeV) replication and downregulated type I IFN production. Upon SeV infection, FoxO1 suppressed K63-linked ubiquitination of TRAF3 and the interaction between TRAF3 and TBK1, after which the production of type I IFNs via the interferon regulatory transcription factor 3 (IRF3) pathways was reduced. In addition, FoxO1 destabilized IRF3 by facilitating E3 ligase TRIM22- or TRIM21-mediated K48-linked ubiquitination of IRF3. Moreover, the inhibitory effect of FoxO1 was found to depend on its DNA binding domain (DBD). Thus, our findings highlight novel important roles of FoxO1 in controlling RLR-mediated antiviral innate immunity.


Asunto(s)
Proteína 58 DEAD Box/inmunología , Proteína 58 DEAD Box/metabolismo , Proteína Forkhead Box O1/metabolismo , Inmunidad Innata/fisiología , Interferón Tipo I/metabolismo , Infecciones por Virus ARN/metabolismo , Antivirales , Proteína 58 DEAD Box/genética , Proteína Forkhead Box O1/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Antígenos de Histocompatibilidad Menor/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Ribonucleoproteínas/metabolismo , Virus Sendai , Transducción de Señal , Células THP-1 , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Viruses ; 12(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322045

RESUMEN

Recent RNA virus outbreaks such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus (EBOV) have caused worldwide health emergencies highlighting the urgent need for new antiviral strategies. Targeting host cell pathways supporting viral replication is an attractive approach for development of antiviral compounds, especially with new, unexplored viruses where knowledge of virus biology is limited. Here, we present a strategy to identify host-targeted small molecule inhibitors using an image-based phenotypic antiviral screening assay followed by extensive target identification efforts revealing altered cellular pathways upon antiviral compound treatment. The newly discovered antiviral compounds showed broad-range antiviral activity against pathogenic RNA viruses such as SARS-CoV-2, EBOV and Crimean-Congo hemorrhagic fever virus (CCHFV). Target identification of the antiviral compounds by thermal protein profiling revealed major effects on proteostasis pathways and disturbance in interactions between cellular HSP70 complex and viral proteins, illustrating the supportive role of HSP70 on many RNA viruses across virus families. Collectively, this strategy identifies new small molecule inhibitors with broad antiviral activity against pathogenic RNA viruses, but also uncovers novel virus biology urgently needed for design of new antiviral therapies.


Asunto(s)
Antivirales/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus ARN/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Ebolavirus/efectos de los fármacos , Ebolavirus/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/efectos de los fármacos , Virus de la Fiebre Hemorrágica de Crimea-Congo/fisiología , Humanos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica , Proteoma/efectos de los fármacos , Proteostasis/efectos de los fármacos , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/metabolismo
14.
Int Rev Cell Mol Biol ; 357: 81-122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33234246

RESUMEN

Phosphatidylserine (PS) is an anionic phospholipid that is usually localized in the inner leaflets of the plasma membrane. However, the enzyme scramblase catalyzes the externalization of PS on the outer leaflet of the plasma membrane during apoptosis or cellular stress. This event prompts the recognition of PS displaying cells by phagocytes leading to "apoptotic clearance." Multiple PS receptors (PSRs) mediate this process including members from the TAM (Tyro3, Axl, Mertk) receptor Tyrosine kinases (RTKs) by interacting with PS via bridging proteins like Gas6 and ProS1. Ironically, this network (PS/TAM) that evolved for boosting cellular health through clearance of apoptotic and necrotic cells, has been manoeuvred by pathogens and tumor cells using "apoptotic mimicry." Enveloped viruses, responsible for most of the lethal epidemics and pandemics including the current SARS-CoV2 outbreak, have employed apoptotic mimicry to their advantage. In the current chapter, we summarize the existing knowledge regarding the involvement of PS/Gas6, ProS1/TAM in facilitating infectivity in a diverse set of cell lines, animals as well as organoids. This network executes a largely proviral role in facilitating infection as seen with Zika, Ebola, Influenza and Dengue viruses. However, this response varies with strains and the cells infected, and in some cases, this same signaling displays an antiviral function. We also report multiple studies that have used neutralizing antibodies and small molecule inhibitors in successfully reducing viral replication and ameliorating pathogenicity. Knowledge about this unique signaling pathway and measures that can be taken to inhibit it is most valuable now given how enveloped viruses lead to plagues on the entire globe.


Asunto(s)
Proteínas Proto-Oncogénicas/metabolismo , Infecciones por Virus ARN/metabolismo , Virus ARN/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Tirosina Quinasa c-Mer/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína S/metabolismo , Tirosina Quinasa del Receptor Axl
15.
Immunol Lett ; 228: 83-85, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33002511

RESUMEN

Previous research demonstrates that, in clinically relevant concentrations, azithromycin can boost the ability of RNA viruses to induce type 1 interferon by amplifying the expression and virally-mediated activation of MDA5. O-GlcNAcylation of MAVS, a down-stream target of MDA5, renders it more effective for type 1 interferon induction. High-dose glucosamine administration up-regulates O-GlcNAcylation by increasing the cellular pool of UDP-N-acetylglucosamine. Hence, it is proposed that joint administration of azithromycin and high-dose glucosamine, early in the course of RNA virus infections, may interact in a complementary fashion to aid their control by enhancing type 1 interferon induction.


Asunto(s)
Antivirales/uso terapéutico , Azitromicina/uso terapéutico , Glucosamina/uso terapéutico , Interferón Tipo I/metabolismo , Infecciones por Virus ARN/tratamiento farmacológico , Virus ARN/inmunología , Animales , Quimioterapia Combinada , Interacciones Huésped-Patógeno , Humanos , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/patogenicidad
16.
Front Immunol ; 11: 1718, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849607

RESUMEN

Receptor interacting protein 1 (RIP1) is an essential sensor of cellular stress, which may respond to apoptosis or cell survival and participate in antiviral pathways. To investigate the roles of fish RIP1 in Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) infection, a RIP1 homolog from orange-spotted grouper (Epinephelus coioides) (EcRIP1) was cloned and characterized. EcRIP1 encoded a 679 amino acid protein that shares 83.28% identity with that of Perca flavescens and contained a homologous N-terminal kinase (S-TKc) domain, a RIP isotype interaction motif (RHIM), and a C-terminal domain (DD). EcRIP1 was predominantly detected in immune tissues, and its expression was induced by RGNNV or SGIV infection in vitro. Subcellular localization showed that EcRIP1 was distributed in the cytoplasm with point-like uniform and dot-like aggregation forms. Overexpression of EcRIP1 inhibited SGIV and RGNNV replication and positively regulated the expression levels of interferon (IFN) and IFN-stimulated genes and pro-inflammatory factors. EcRIP1 may interact with grouper tumor necrosis factor receptor type 1-associated DEATH domain protein (EcTRADD) to promote SGIV-induced apoptosis, and interact with grouper Toll/interleukin-1 receptor (TIR) domain containing adapter inducing interferon-ß (EcTRIF) and participate in Myeloid Differentiation Factor 88 (MyD88)-independent toll-like receptor (TLR) signaling. EcRIP1 may also interact with grouper tumor necrosis factor receptor-associated factors (TRAFs) as intracellular linker proteins and mediate the signaling of various downstream signaling pathways, including NF-κB and IFN. These results suggest that EcRIP1 may inhibit SGIV and RGNNV infection by regulating apoptosis and various signaling molecules. Our study offers new insights into the regulatory mechanism of RIP1-related signaling, and provides a novel perspective on fish diseases mediated by RIP1.


Asunto(s)
Lubina/virología , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , Inmunidad Innata , Iridovirus/patogenicidad , Nodaviridae/patogenicidad , Infecciones por Virus ARN/veterinaria , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Lubina/genética , Lubina/inmunología , Lubina/metabolismo , Células Cultivadas , Citocinas/metabolismo , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/metabolismo , Infecciones por Virus ADN/virología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Interacciones Huésped-Patógeno , Iridovirus/inmunología , Nodaviridae/inmunología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Transducción de Señal
17.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32559462

RESUMEN

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Asunto(s)
Caperuzas de ARN/genética , Infecciones por Virus ARN/genética , Proteínas Recombinantes de Fusión/genética , Regiones no Traducidas 5'/genética , Animales , Bovinos , Línea Celular , Cricetinae , Perros , Humanos , Virus de la Influenza A/metabolismo , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Sistemas de Lectura Abierta/genética , Caperuzas de ARN/metabolismo , Infecciones por Virus ARN/metabolismo , Virus ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
18.
Viruses ; 12(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244383

RESUMEN

Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.


Asunto(s)
ADP-Ribosilación/inmunología , Virus ARN/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/inmunología , Adenosina Difosfato Ribosa/metabolismo , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/virología , Humanos , Interferones/inmunología , Mutación , Poli(ADP-Ribosa) Polimerasas/inmunología , Dominios Proteicos , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
19.
Sci Rep ; 10(1): 4746, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179788

RESUMEN

Ginkgolic acids (GA) are alkylphenol constituents of the leaves and fruits of Ginkgo biloba. GA has shown pleiotropic effects in vitro, including: antitumor effects through inhibition of lipogenesis; decreased expression of invasion associated proteins through AMPK activation; and potential rescue of amyloid-ß (Aß) induced synaptic impairment. GA was also reported to have activity against Escherichia coli and Staphylococcus aureus. Several mechanisms for this activity have been suggested including: SUMOylation inhibition; blocking formation of the E1-SUMO intermediate; inhibition of fatty acid synthase; non-specific SIRT inhibition; and activation of protein phosphatase type-2C. Here we report that GA inhibits Herpes simplex virus type 1 (HSV-1) by inhibition of both fusion and viral protein synthesis. Additionally, we report that GA inhibits human cytomegalovirus (HCMV) genome replication and Zika virus (ZIKV) infection of normal human astrocytes (NHA). We show a broad spectrum of fusion inhibition by GA of all three classes of fusion proteins including HIV, Ebola virus (EBOV), influenza A virus (IAV) and Epstein Barr virus (EBV). In addition, we show inhibition of a non-enveloped adenovirus. Our experiments suggest that GA inhibits virion entry by blocking the initial fusion event. Data showing inhibition of HSV-1 and CMV replication, when GA is administered post-infection, suggest a possible secondary mechanism targeting protein and DNA synthesis. Thus, in light of the strong effect of GA on viral infection, even after the infection begins, it may potentially be used to treat acute infections (e.g. Coronavirus, EBOV, ZIKV, IAV and measles), and also topically for the successful treatment of active lesions (e.g. HSV-1, HSV-2 and varicella-zoster virus (VZV)).


Asunto(s)
Antivirales/farmacología , Infecciones por Virus ADN/metabolismo , Virus ADN/efectos de los fármacos , Infecciones por Virus ARN/metabolismo , Virus ARN/efectos de los fármacos , Salicilatos/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas Virales de Fusión/antagonistas & inhibidores , Animales , Astrocitos/metabolismo , Chlorocebus aethiops , Replicación del ADN/efectos de los fármacos , Infecciones por Virus ADN/virología , Virus ADN/genética , ADN Viral/genética , Células HEK293 , Humanos , Infecciones por Virus ARN/virología , Virus ARN/genética , Células Vero , Proteínas del Envoltorio Viral/biosíntesis , Proteínas Virales de Fusión/biosíntesis , Virión/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
20.
Pharmacol Ther ; 209: 107512, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32097670

RESUMEN

Favipiravir has been developed as an anti-influenza drug and licensed as an anti-influenza drug in Japan. Additionally, favipiravir is being stockpiled for 2 million people as a countermeasure for novel influenza strains. This drug functions as a chain terminator at the site of incorporation of the viral RNA and reduces the viral load. Favipiravir cures all mice in a lethal influenza infection model, while oseltamivir fails to cure the animals. Thus, favipiravir contributes to curing animals with lethal infection. In addition to influenza, favipiravir has a broad spectrum of anti-RNA virus activities in vitro and efficacies in animal models with lethal RNA viruses and has been used for treatment of human infection with life-threatening Ebola virus, Lassa virus, rabies, and severe fever with thrombocytopenia syndrome. The best feature of favipiravir as an antiviral agent is the apparent lack of generation of favipiravir-resistant viruses. Favipiravir alone maintains its therapeutic efficacy from the first to the last patient in an influenza pandemic or an epidemic lethal RNA virus infection. Favipiravir is expected to be an important therapeutic agent for severe influenza, the next pandemic influenza strain, and other severe RNA virus infections for which standard treatments are not available.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Pirazinas/uso terapéutico , Infecciones por Virus ARN/tratamiento farmacológico , Animales , Humanos , Gripe Humana/genética , Gripe Humana/metabolismo , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...